67 research outputs found

    Coordination between intrinsic and extrinsic mechanism in thoracic lymphatics.

    Get PDF
    The lymphatic system runs in parallel with the blood vasculature, it plays a key role in maintaining tissue fluid homeostasis, as a tissue-drainage system, and it contributes to the immunosurveillance by providing a route for migrating cells. The lymphatic system is a highly branched network of thin-walled blind-ended vessels, which drain fluid, macromolecules and cells from the extracellular spaces within most organs, carrying them into larger thicker-walled collectors running deeper in the body. Fluid and solutes extravasated from vascular capillaries into the interstitial space enter blind-ended initial lymphatics, which are anchored to the interstitial matrix via anchoring filaments and possess overlapping endothelial cell-cell junctions behaving like valve structures, only permitting unidirectional lymph entry into the lymphatic vessel lumen. Valves in collecting lymphatics consist of two modified adjacent endothelial cell leaflets which meet in the vessel lumen forming a funnel inside the vessel and separating adjacent lymphangions, the functional units of the lymphatic system. Lymph is formed along a hydraulic pressure gradient developing between the interstitial tissue and the lumen of initial lymphatics. This pressure gradient depends upon both extrinsic and intrinsic pump systems. Tissue movements provide the extrinsic factor affecting lymphatic function, causing cycles of external compression/expansion of the lymphatic vessels lumen.. Lymphangions, segments of lymphatic vessel delimited by unidirectional valves and surrounded by smooth muscle cells, represent the functional units of the intrinsic pump mechanism. Their rhythmic active contraction is essential to guarantee the correct lymph flow either as the only source of pressure gradient formation or along with the extrinsic pump, where the mechanical features of the surrounding tissue are able to generate such an external pump action. During active contraction, lymphatic smooth muscle cells create an increase in intraluminal pressure and generate a local positive pressure gradient which drives lymph propulsion. The subsequent relaxation of the smooth muscle layer generates a decrease in intraluminal pressure which drives lymph from the interstitial space into the vessel itself. The aim of the present thesis was to study the interaction between the intrinsic and extrinsic mechanisms in a highly moving tissue such as the diaphragm. By in vivo fluorescence staining of diaphragmatic lymphatics we were able to identify vessels organized in loop structures and located both in the tendineous and in the peripheral muscle region. Lymphatic loops were classified into four groups (active, hybrid, passive and invariant) according to their functional behavior, forming functionally distinct regions. By whole mount immunostaining against smooth muscle actin we identified a dense smooth muscle mesh surrounding actively pumping sites, whereas in not contracting tracts smooth muscle fibers were more sparsely organized, showing a lot of large gaps around the vessel wall. Actively pumping lymphatic sites did not differ in diameter from all other classes of vessels. We found that their amplitude of contraction was independent on vessel size but strongly correlated to contraction frequency. By temporal analysis we were also able to identify trigger sites which controlled the diameter change of both other active and passive sites belonging to the same network. We then made an extensive study on the temporal correlation of activity among active, hybrid and passive sites belonging to the same network, and were able to identify trigger regions and follower regions whose behavior was dependent upon their respective trigger sites Lastly, we started an ongoing project in order to understand the extrinsic pump effect due to respiratory and cardiogenic movements on diaphragmatic lymphatic function. By locally injecting KCl into the interstitium next to invariant longitudinal and/or transverse lymphatics we tested diameter and/or length changes and then intraluminal pressure gradients due to extrinsic forces. Further analysis are required in order to define the actual contribution of intrinsic and extrinsic mechanisms in diaphragmatic lymphatics

    TRPV4 channels dominant role in the temperature modulation of intrinsic contractility and lymph flow of rat diaphragmatic lymphatics

    Get PDF
    The lymphatic system drains and propels lymph by extrinsic and intrinsic mechanisms. Intrinsic propulsion depends upon spontaneous rhythmic contractions of lymphatic muscles in the vessel walls, and is critically affected by changes in the surrounding tissue like osmolarity and temperature. Lymphatics of the diaphragm display a steep change in contraction frequency in response to changes in temperature, and this, in turn, affects lymph flow. In the present work we demonstrated, in an ex vivo diaphragmatic tissue rat model, that diaphragmatic lymphatics express transient receptor potential channels of the vanilloid 4 subfamily (TRPV4), and that their blockade by both the non-selective antagonist, Ruthenium Red and by the selective antagonist, HC-067047, abolished the response of lymphatics to temperature changes. Moreover, the selective activation of TRPV4 channels by means of GSK1016790A mirrored the behavior of vessels exposed to increasing temperatures, pointing out the critical role played by these channels in sensing the temperature of the lymphatic vessels environment and thus inducing a change in contraction frequency and lymph flow

    A computational procedure to identify significant overlap of differentially expressed and genomic imbalanced regions in cancer datasets†

    Get PDF
    The integration of high-throughput genomic data represents an opportunity for deciphering the interplay between structural and functional organization of genomes and for discovering novel biomarkers. However, the development of integrative approaches to complement gene expression (GE) data with other types of gene information, such as copy number (CN) and chromosomal localization, still represents a computational challenge in the genomic arena. This work presents a computational procedure that directly integrates CN and GE profiles at genome-wide level. When applied to DNA/RNA paired data, this approach leads to the identification of Significant Overlaps of Differentially Expressed and Genomic Imbalanced Regions (SODEGIR). This goal is accomplished in three steps. The first step extends to CN a method for detecting regional imbalances in GE. The second part provides the integration of CN and GE data and identifies chromosomal regions with concordantly altered genomic and transcriptional status in a tumor sample. The last step elevates the single-sample analysis to an entire dataset of tumor specimens. When applied to study chromosomal aberrations in a collection of astrocytoma and renal carcinoma samples, the procedure proved to be effective in identifying discrete chromosomal regions of coordinated CN alterations and changes in transcriptional levels

    Lung parenchyma modifications after mechanical ventilation and fluid load

    Get PDF
    Mechanical ventilation with or without positive pressure in the airways (PEEP) and with or without mild fluid load can cause some modification on the morphology of the lung matrix in the ventral and dorsal lung regions of supine healthy rats. To evaluate the differences between dorsal and ventral areas of the lungs after different strategies of ventilation we subdivided rats in two sets of animals, one without any intravenous infusion, the other one with intravenous infusion of phosphate buffered saline (PBS) maintained during all the mechanical ventilation. Each set was further subdivided in groups which underwent different ventilation strategies, vary- ing the end-expiratory pressure (0 or 5 mmH2O) and the spontaneous/mechanical breathing. At the morphological analysis no signs of parenchyma injury were collected in all the groups of either sets, although were evident differences in alveolar septa thick- ness: in all the not-infused groups submitted to mechanical ventilation was observed a thinning of the alveolar septa combined with a enlargement of the perivascular fluid cuffs both in ventral and dorsal regions. The infused specimens demonstrate a more congested parenchyma with irregular development of perivascular fluid cuffs around lung microvessels. In all groups, the maintaining of the PEEP during the mechanical ventilation induced significative corner and alveolar septa thinning respect to the controls, more accentuate in the ventral regions. In infused groups, we observed general alveolar septa and corner thickening, with reduction of the differ- ences between dorsal and ventral regions. Mechanical ventilation and fluid load may cause injuries to the lung parenchyma, mainly in the ventral region, injuries that seems to be reduced using a positive pres- sure on the airways, as the PEEP, which seemed to be protective for the extracellular matrix of the lung during the mechanical ventilation. The authors gratefully acknowledge the “Centro Grandi Attrezzature per la Ricer- ca Biomedica” of Insubria University for instruments availability

    Applying multidimensional computerized adaptive testing to the MSQOL-54: a simulation study

    Get PDF
    Background: The Multiple Sclerosis Quality of Life-54 (MSQOL-54) is one of the most commonly-used MS-specific health-related quality of life (HRQOL) measures. It is a multidimensional, MS-specific HRQOL inventory, which includes the generic SF-36 core items, supplemented with 18 MS-targeted items. Availability of an adaptive short version providing immediate item scoring may improve instrument usability and validity. However, multidimensional computerized adaptive testing (MCAT) has not been previously applied to MSQOL-54 items. We thus aimed to apply MCAT to the MSQOL-54 and assess its performance. Methods: Responses from a large international sample of 3669 MS patients were assessed. We calibrated 52 (of the 54) items using bifactor graded response model (10 group factors and one general HRQOL factor). Then, eight simulations were run with different termination criteria: standard errors (SE) for the general factor and group factors set to different values, and change in factor estimates from one item to the next set at < 0.01 for both the general and the group factors. Performance of the MCAT was assessed by the number of administered items, root mean square difference (RMSD), and correlation. Results: Eight items were removed due to local dependency. The simulation with SE set to 0.32 (general factor), and no SE thresholds (group factors) provided satisfactory performance: the median number of administered items was 24, RMSD was 0.32, and correlation was 0.94. Conclusions: Compared to the full-length MSQOL-54, the simulated MCAT required fewer items without losing precision for the general HRQOL factor. Further work is needed to add/integrate/revise MSQOL-54 items in order to make the calibration and MCAT performance efficient also on group factors, so that the MCAT version may be used in clinical practice and research

    Viability of a MSQOL-54 general health-related quality of life score using bifactor model

    Get PDF
    Background MSQOL-54 is a multidimensional, widely-used, health-related quality of life (HRQOL) instrument specific for multiple sclerosis (MS). Findings from the validation study suggested that the two MSQOL-54 composite scores are correlated. Given this correlation, it could be assumed that a unique total score of HRQOL may be calculated, with the advantage to provide key stakeholders with a single overall HRQOL score. We aimed to assess how well the bifactor model could account for the MSQOL-54 structure, in order to verify whether a total HRQOL score can be calculated. Methods A large international database (3669 MS patients) was used. By means of confirmatory factor analysis, we estimated a bifactor model in which every item loads onto both a general factor and a group factor. Fit of the bifactor model was compared to that of single and two second-order factor models by means of Akaike information and Bayesian information criteria reduction. Reliability of the total and subscale scores was evaluated with Mc Donald's coefficients (omega, and omega hierarchical). Results The bifactor model outperformed the two second-order factor models in all the statistics. All items loaded satisfactorily (>= 0.40) on the general HRQOL factor, except the sexual function items. Omega coefficients for total score were very satisfactory (0.98 and 0.87). Omega hierarchical for subscales ranged between 0.22 to 0.57, except for the sexual function (0.70). Conclusions The bifactor model is particularly useful when it is intended to acknowledge multidimensionality and at the same time take account of a single general construct, as the HRQOL related to MS. The total raw score can be used as an estimate of the general HRQOL latent score

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad

    Get PDF
    Acta de congresoLa conmemoración de los cien años de la Reforma Universitaria de 1918 se presentó como una ocasión propicia para debatir el rol de la historia, la teoría y la crítica en la formación y en la práctica profesional de diseñadores, arquitectos y urbanistas. En ese marco el VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad constituyó un espacio de intercambio y reflexión cuya realización ha sido posible gracias a la colaboración entre Facultades de Arquitectura, Urbanismo y Diseño de la Universidad Nacional y la Facultad de Arquitectura de la Universidad Católica de Córdoba, contando además con la activa participación de mayoría de las Facultades, Centros e Institutos de Historia de la Arquitectura del país y la región. Orientado en su convocatoria tanto a docentes como a estudiantes de Arquitectura y Diseño Industrial de todos los niveles de la FAUD-UNC promovió el debate de ideas a partir de experiencias concretas en instancias tales como mesas temáticas de carácter interdisciplinario, que adoptaron la modalidad de presentación de ponencias, entre otras actividades. En el ámbito de VIII Encuentro, desarrollado en la sede Ciudad Universitaria de Córdoba, se desplegaron numerosas posiciones sobre la enseñanza, la investigación y la formación en historia, teoría y crítica del diseño, la arquitectura y la ciudad; sumándose el aporte realizado a través de sus respectivas conferencias de Ana Clarisa Agüero, Bibiana Cicutti, Fernando Aliata y Alberto Petrina. El conjunto de ponencias que se publican en este Repositorio de la UNC son el resultado de dos intensas jornadas de exposiciones, cuyos contenidos han posibilitado actualizar viejos dilemas y promover nuevos debates. El evento recibió el apoyo de las autoridades de la FAUD-UNC, en especial de la Secretaría de Investigación y de la Biblioteca de nuestra casa, como así también de la Facultad de Arquitectura de la UCC; va para todos ellos un especial agradecimiento

    Interplay between Gut Lymphatic Vessels and Microbiota

    No full text
    Lymphatic vessels play a distinctive role in draining fluid, molecules and even cells from interstitial and serosal spaces back to the blood circulation. Lymph vessels of the gut, and especially those located in the villi (called lacteals), not only serve this primary function, but are also responsible for the transport of lipid moieties absorbed by the intestinal mucosa and serve as a second line of defence against possible bacterial infections. Here, we briefly review the current knowledge of the general mechanisms allowing lymph drainage and propulsion and will focus on the most recent findings on the mutual relationship between lacteals and intestinal microbiota
    corecore